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A survey of investigations of the rheological characteristics of materials at high de- 
formation rates can be found in [1-4], and we shall, therefore, limit our considerations to 
the basic results. It was found in [5] that there is a difference between the yield points 
in static and dynamic tests, which subsequently led to the concept of the dynamic tensile- 
compressive diagram for specimens in the plastic region, which was first defined in [6]. Ex- 
periments performed with greater accuracy were discussed in [7], where the residual strain 
produced by the collision of rods was determined, while the dynamic diagram was determined 
by means of the method described in [8]. 

It was discovered in [9, i0], apparently for the first time, that waves propagate at 
elastic velocities in copper not only in the elastic region, but also beyond the yield point~ 
These results were subsequently confirmed by more refined experiments [ii, 12] on different 
materials, which indicated the necessity of accounting for the effect of the plastic strain 
rate in investigating wave processes. From among the many papers devoted to the effect of 
the strain rate effect, the investigations described in [13, 14], where aluminum and steel 
specimens were tested in a complex stressed state, are of interest. It was shown there that, 
in loading, at a high rate, the second invariant of the stress tensor J2 depends not only on 
the second invariant of the strain tensor I2, but also on i2o 

The general relationships for rate sensitive media have been proposed in [15, 16], where 
the relationships given in [9] are generalized to include a complex stress state. Another 
variant of generalization of Malvern's relationships is proposed in [17]. The theories set 
forth in [15-17] comprise certain functions which must be determined experimentally. Certain 
approximations have been found in [15] for these functions on the basis of experimental data 
[18], where the yield poin t of soft steel as a function of the strain rate is determined in 
the range 0<~< 200 sec -I. The trends of wave propagation in media sensitive to the plastic 
strain rate are investigated in [19]. We propose here a method of measuring the rheological 
characteristics of materials based on the solution obtained in [19]. This method has been de- 
veloped in the laboratories of the Kuibyshev State University. 

The total strain is composed of the elastic and the plastic components: 
e eij = e~j + e~5. (i) 

The elastic components eej are related to the stress by Hooke's law, 

e ~ - -  2v 
= Ee~8~j -5 2~te~j, ei~ -- ~ sij n u ~ O'khSij, (2) (;lj 

where % and p are Lame constants; sij = oij -- (i/3)Okk6ij, the stress deviator. 

For media sensitive to the plastic strain rate, we assume [20] that the loading surface 
depends on the plastic strain rate: 

/(~,, e~j, e,, "~ X,) = 0, (3) 

where Xi are certain parameters of the plastic deformation history. 

The plastic strain rate is determined on the basis of the associated law of flow: 

Z2 a~j ' (4) 

where ~ is a positive indeterminate factor, the equation for:which is obtained by substitut- 
ing (4) in (3): 
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0 %  / (5) \ 

If af/aoij is independent of the plastic strain rate, we find from (5) that ~ = ~(oij , e~j, 
Xip), i.e., ~ is independent of e~.. In this case, the results given in [15, 16] follow from 
the general relationships (1)-(4)zJif we put 

V=y<~(F)>, F =  /("iJ'e~) | ,  •  oljde . (6) 

The relationships proposed in [17] are obtained if the following is put in (1)-(5): 

e,]) �9 -x ;'P (7) 
= -- e~, = o~ -- / (eO - \ ' T / '  oi" IC'*) I, / (a i i ,  v 

where y is the viscosity coefficient; o i and ei, intensities of the stress and strain devia- 
tors, $i p, intensity of the plastic strain rate; ~, <~(f)> = ~(F) for F > 0, and <O(F)> = 0 
for F ~ 0. 

It is necessary to distinguish between two problems in experimental investigations of 
the relationship between stress and strain. The first problem involves the study of the ma- 
terial's behavior at an arbitrarily low strain rate, e~ = 0, i.e., the study of changes in 
the loading surface. In [15, 16], this problem in det$~mining f(~ij, e~j), while, in [17], 

it involves determination of the dependence ~i = f(ei)" The theory in [17] is the isotropic 
hardening theory. The second problem consists in determining the effect of the strain rate, 
i.e., determining ~(F) in the above theories. While the first problem is a familiar one and 
is solved by purely experimental means within the framework of plasticity theory, the solu- 
tion of the second problem for high strain rates involves additional difficulties, connected 
primarily with the separation of the effect of inertial forces that develop in this case from 
the effect of the strain rate. For this separation, it is necessary to know the properties 
of solutions of the dynamic equations for elastoplastic media sensitive to the strain rate 
for sufficiently arbitrary rheological relationships, i.e., for arbitrary f(oij, e~j, 13' 

Xi) or arbitrary ~(F) in [15-17]. Some of these propertie~ Were investigated in [19], where 
eP e~ , Xi) was used in the following form: the function f(oij, ij' j 

�9 " 2 2 (si j  - -  ce~ - -  ~e~)  (s l j  - -  ce~ - -  ~ e ~ )  - -  y k = 0.  ( 8 )  

It is convenient to assume here that c and k are functions of e~j_ and Xi, which are deter- 

mined in tests at low loading rates, and that n is a function of the plastic strain rate 

efl=Ve~e~, , while k is the tensile yield point. It has been shown in [19] that only two 

types of waves, which propagate at the elastic velocities pc~ = ~ + 2~, and pc~ = ~, can oc- 
cur in rate sensitive materials. This fact is in agreement with experimental data [9-12]. 
The following relationships hold for waves propagating at the velocity c,: 

[vll = ova, c~[~ul = --o(kSu + 2~v:#), (9) 
where ~i is the normal to the wave front and ~ is the intensity of the wave, whose variation 
in motion along the normal is described by the differential equation 

~ o  = clQo + e~]vivj,  (i0) 
6t 

where [vi] , [oij], and [~Pj] are the discontinuities in the displacement rate, stress, and the 

plastic strain rate behind the wave front, and 2 is the mean curvature of the wave surface. 

The following relationships hold for waves propagating at the velocity c=: 

[0"ij] = --pc2([v~]vj @ [vj]vj,), [v~]vt~ = 0. (11)  
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[vi] varies in motion along the normal to the wave surface in accordance with 

8 ['d 

Wave (9) is the easiest one to produce experimentally, and, therefore, we shall analyze only 
the case where the wave under consideration propagates in a stationary medium at the velocity 
ci. The plastic strain behind the wave front is equal to zero, and, for the Perzyna theory 
[15, 16], we obtain the plastic strain rate in the following form: 

8~j : ? r  sij~ (13) 

where F------i ~, ~/3sijs~J2k 2 , i.e., in the initial state, the yield surface constitutes the 
Mises circle. For Kaliski's theory, we obtain 

e~ == yCR(F) s d V ~ l s k z .  (14) 

It is evident from (13) and (14) that the functions ~p(F) and ~K(F) figuring in both theories 
are related by the expressions 

(F +:o .rTV# kcp (F) = cK (F). (15) 

Therefore, we shall subsequently limit our considerations to relationships (13). 

Assuming that the loading surface is given by (8), we obtain from (3) and (4) the follow- 
ing equation for the plastic strain rate: 

V'-~'- keij �9 ~ 
q- rleij . (16) 

hl hl 

R e l a t i o n s h i p s  (16) d e f i n e  t he  s t r e s s  d e v i a t o r  i n  t e rms  o f  t h e  p l a s t i c  s t r a i n  r a t e ,  w h i l e  r e -  
l a t i o n s h i p s  (13)o c o n v e r s e l y ,  d e f i n e  t h e  p l a s t i c  s t r a i n  r a t e  i n  t e rms  o f  the  s t r e s s .  S ince  
~ i j  = 0 ahead o f  Chewave f r o n t ,  i t  f o l l o w s  f rom (9) t h a t  t h e  f o l l o w i n g  e x p r e s s i o n s  h o l d  beh ind  
t h e  wave f r o n t :  

(~  = @ (~,6i~ + 2~vj)~ su = ~ viv~ - -  - ] -  6 u ,: ei (17) 
1 c 1 ~ 3 "  

The d i s c o n t i n u i t i e s  i n  t he  p l a s t i c  s t r a i n  r a t e  f o r  the  model  d e s c r i b e d  : in  [15,  16] a r e  d e t e r -  
mined on t h e  b a s i s  o f  r e l a t i o n s h i p s  ( 1 3 ) ,  whence 

For the loading surface (8), the plastic strain rate behind the wave front is determined from 
relationships (16), whence 

i/ 
2g~ 1 6 ,~k%~ (e~) ~z. (19) 

For determining eP, we obtain from (19) the equation 
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and, 

�9 T = V , T  2.,+ 

for determining the plastic strain, the expression 

�9 I 

( 2 0 )  

(21) 

where e~ is expressed in terms of m according to Eq. (20). If we produce experimentally a 
I 

two-dimensional load wave in the material and measure m (x), the wave intensity at the time 
the front passes through the point with the coordinate x, then, by using relationships (i0), 
we obtain 

d---9-~ = ~-~--[ e~]  v ~ j .  (22) 
dz pc~ 

In processing experimental data according to the theory given in [15, 16], it is con- 
venient to present the values of d~/dx as functions of F = 2~m/kc, -- i. We then obtain from 
relationships (22) and (18) 

3pc~ d`" 
yCv(F) = 2,k(F+ i) dx (23) 

In processing experimental data according to the theory involving the loading surface (8), it 

is convenient to plot ~ as a function of 

lationships (22) and (21): 

pc~ m / / ' ~  d`" 
- - - ~ - V  ~ - - ~ z  ' s i n c e  we h a v e  t h e  f o l l o w i n g  f r o m  r e -  

p~ d x "  

We then determine experimentally the value of ~ as a function of e~ and obtain from (20) 
l 

c 1 e p ] 
(24) 

The experiments were performed on specimens of ED-6 epoxy resin, hardened by means of a 
maleic hardener. The specimens were prepared by pouring the mixture of resin and hardener in- 
to a glass tube with the pressure gauges fastened along the axis. The pressure gauges con- 
sisted of barium titanate tablets with a diameter of 3 mm and a thickness of 0.8 m m, which 
were first calibrated according to the method described in [21]. The specimens had a diame- 
ter of 40 mm and a length of 1200 mm. The load was applied to specimens by the shock wave 
produced as a result of electric detonation of an aluminum foll pasted on the specimen's end- 
face. The foil was blasted by means of discharge from a battery consisting of six IK-I00- 
0~ capacitors through a mechanical impact spark gap with a peaker. The duration and the 
initial pressure in the pulse were varied by changing the foil thickness and commutating the 
capacitors in the battery. The signals from the gauges were recorded on an SI-33 oscillo- 
scope. The accuracy of pressure measurements along the through channel was not worse than 
10%. The position of the gauges along the specimen was measured with an accuracy of • mm. 
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Figure I shows the variation of pulse pressure along the specimen in four cases: i) dis- 
charge energy, 7.5 kJ; 2) 6.2 kJ; 3) 5.0 kJ; 4) 3.7 kJ. The pulse duration is the same: 
2.5"i0 -s sec. The initial data for plotting relationships (23) and (24) are the following: 
c, = 2060 m/sec, p = 1220 kg/m s, k = 2.7.10" N/m 2, c2 = 1140 m/sec, and v = 0.39. Figure 2 
shows relationship (23), while Fig. 3 illustrates relationship (24). The markings of the 
calculation points correspond to four different cases of loading: 1-4) Discharge energies 
of 7.5, 6.2, 5, and 3.7 kJ. The considerably lesser scattering of values in Fig. 3 means 
that the results obtained by experimental data processing based on theory involving the load 
surface (8) are less sensitive to errors in determining the pulse pressure. 
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